Abrasive cut-off wheels

Selecting the right cut-off wheel ensures freedom from burn and distortion and is the best way to save time and consumables. Correct cutting produce specimens which are in perfect condition for the next preparation steps.

The most commonly used abrasives for the cutting of different materials are Silicon Carbide and Aluminium Oxide. Silicon carbide is suitable for non-ferrous metals whereas Aluminium oxide is preferred for ferrous metals. Hard wheels are used for cutting soft materials while soft wheels are recommended for cutting harder materials. TRENO type wheels are used to obtain superior cut surfaces.

abrasive cut off wheels

Ultra Thin Precision Abrasive Cut-off Wheels

Ultra Thin TRENO MT/HT/MP/HP series abrasive cut-off wheels have same proper ties with standard TREND wheels. Ultra Thin TRENO wheels are ideal for sectioning small specimens like screws, nuts or any other precision parts. It provides extremely low heat generation thanks to it's low thickness. They an available as 0.5 mm thickness in 0150 mm diameter, 0.8 mm thickness in 0200 mm diameter and 1.0 mm thickness in 0250 mm diameter.

Premium Quality Abrasive Cut-off Wheels

TRENO Ti/NF/H/M/S/SS series abrasive cut-off wheels provide best specimen surface quality and fastest cutting speed with optimum wheel life. It guarantees minimum heat generation and perfect specimen surface. Reduces time and consumable consumption for next sample preparation processes. Available as from 0250 to 0600 mm diameter. 6 type of TREND wheels makes possible to cut all type off materials with a superior surface quality.

Long Life Abrasive Cut-off Wheels

TRENO-DUR brings you an exceptionally fast-cutting and long-lasting wheel. It is extremely cost effective when considering wear rate. It provides optimum specimen surface quality and cutting speed. Ideal for high volume cutting operations, process control labs, cut-check applications etc .. Available as 0250 mm diameter.

Name Diameter (mm) Arbor (mm) Thickness (mm) Abrasive Type Recommended for cutting Code
TRENO-NF 250 32 1.5 Silicon Carbide Non-Ferrous materials 600355
TRENO-H 250 32 1.5 Aluminium Oxide Soft Steels and ferrous materials < 23 HRC 600351
TRENO-M 250 32 1.5 Aluminium Oxide Medium Hard Steels and ferrous materials > 23-55 HRC < 600352
TRENO-S 250 32 1.5 Aluminium Oxide Hard Steels and ferrous materials > 50-60 HRC < 600353
TRENO-SS 250 32 1.5 Aluminium Oxide Very Hard Steels and ferrous materials > 60 HRC 600354
TRENO-NF 300 32 2 Silicon Carbide Non-Ferrous materials 600356
TRENO-H 300 32 2 Aluminium Oxide Soft Steels and ferrous materials < 23 HRC 600499
TRENO-M 300 32 2 Aluminium Oxide Medium Hard Steels and ferrous materials > 23-55 HRC < 600357
TRENO-S 300 32 2 Aluminium Oxide Hard Steels and ferrous materials > 50-60 HRC < 600358
TRENO-SS 300 32 2 Aluminium Oxide Very Hard Steels and ferrous materials > 60 HRC 600498
TRENO-NF 350 32 2.4 Silicon Carbide Non-Ferrous materials 600359
TRENO-M 350 32 2.4 Aluminium Oxide Medium Hard Steels and ferrous materials > 23-55 HRC < 600360
TRENO-S 350 32 2.4 Aluminium Oxide Hard Steels and ferrous materials > 50-60 HRC < 600361
TRENO-SS 350 32 2.4 Aluminium Oxide Very Hard Steels and ferrous materials > 60 HRC 600500
TRENO-NF 400 32 3 Silicon Carbide Non-Ferrous materials -
TRENO-M 400 32 3 Aluminium Oxide Medium Hard Steels and ferrous materials > 23-55 HRC < 600362
TRENO-S 400 32 3 Aluminium Oxide Hard Steels and ferrous materials > 50-60 HRC < 600363
TRENO-SS 400 32 3 Aluminium Oxide Very Hard Steels and ferrous materials > 60 HRC -
TRENO-M 432 32 3 Aluminium Oxide Medium Hard Steels and ferrous materials > 23-55 HRC < 600364
TRENO-S 432 32 3 Aluminium Oxide Hard Steels and ferrous materials > 50-60 HRC < 600365

Cut-Off Wheel Selection Guide

Preparing a specimen for metallographic or micro structural analysis consists of several operations and the first step is to locate the area of interest. Sectioning or cutting is the most common technique for obtaining this area of interest. Proper sectioning guarantees minimal micro structural damage. Excessive subsurface damage and damage to secondary phases (e.g. graphite flakes, nodules or grain pull-out) should be avoided. Depending on the material, the sectioning can be categorized into two areas: Abrasive Cutting and Preci­sion Cutting.

Abrasive cutting is generally used for metal specimens and is accomplished with SiC or Alp3 in resin or rubber bonded cut-off wheels. Abrasive cutting should be performed wet with a sufficient amount of cool­ing fluid that includes lubrication and corrosion protection. Proper blade selection is required to minimize burning and heat generation during cutting which degrades both the specimen surface as well as the blade cutting efficiency. Precision cutting is accomplished with thin diamond blades. Precision cutting is especially useful for cut­ting ceramics and minerals as well as some metallic materials.

Selecting the right cut-off wheel ensures freedom from burn and distortion and is the best way to save time and consumables. Correct cutting produce specimens which are in perfect condition for the next preparation steps. The most commonly used abrasives for the cutting of different materials are SiC and Al203.

When the cutting motor reaches its maxi­mum load the feed rate is automatically adjusted if needed reduced, resulting in perfect cuts and eliminating sample and machine damage. Pulse cutting mode is a standard feature in all automatic models for cutting extra hard specimens. The T-table or the cut-off wheel will move backwards for a few mm.and then stop for a short amount of time in a cycle. This pause in cutting allows more coolant into the cutting area to minimize sample damage.

Inappropriate disc cause extremely heat generation on sample surface. This causes very deep layer of microstructure deformation on the specimen. For this reason, you can not obtain correct microstructure and hardness values. Choosing correct disc is essential for metallography and hardness analysis.

  • Hard cut-off wheels must be used for soft materials
  • Soft cut-off wheels must be used for Hard materials

cutting wheel selection

Below table is a perfect guide for choosing best cut-off wheel according to your sample type, hardness and application requirements.

Material Requirement - 20 HRC 30 HRC 40 HRC 50 HRC 60 HRC 70 HRC +
Non-Ferrous Superior Surface Quality   TREND-NF                                                      
Non-Ferrous Precision Cutting   TREND-HP                                                      
Ferrous Superior Surface Quality     TREND-H                                                    
Ferrous Ultra Thin Cutting           TREND-H                                            
Ferrous Precision Cutting             TREND-MP                        
Ferrous Extremely Long Life             TREND-DUR                    
Titanium/Ductile Materials Superior Surface Quality               TRENO-Ti                    
Ferrous Superior Surface Quality               TRENO-M                          
Ferrous Ultra Thin Cutting                       TREND-MT                          
Ferrous Superior Surface Quality                                   TREND-S                    
Ferrous Superior Surface Quality                                           TREND-SS            
Very Hard Metals CBN Cutting                                                     CBN
Ceramic/Glass Diamond Cutting                                                     Diamond

Budget cut off wheel range